A 2M_sun pulsar: implications for quark matter

Xiao-yu Lai Peking University Collaborator: Prof. Renxin Xu May 11, 2011

Outline

- Strange quark matter and pulsars
- Models of quark stars
 - Maximum mass of quark stars: reach 2M_sun?
 - ----> Implications for state of quark matter
- Conclusions

What is Strange Quark Matter

QCD phase diagram

What is Strange Quark Matter

SQM is composed of *u*, *d* and *s* lacksquareE / A (MeV) quarks (~ 10^{-5} *e*/baryon). 1300 1200 . k matter 1100 SQM could be more stable than 1000 ordinary matter 930 900 Nuclear matter (Bodmer 1971, Witten 1984). (neutrons and protons) 800 uds-auark matte (strange matter) $\varepsilon / \varepsilon_0$ ~ 2 Astrophysical implications of Bodmer-Witten conjecture? (F. Weber, 2005)

Pulsars

pulsars = rotating "neutron stars"

(F. Weber 2005)

Average density
$$\bar{\rho} = \frac{1.4 \ M_{\odot}}{4\pi (10 \ \mathrm{km})^3/3} \simeq 2.4 \ \rho_0$$

Deconfinded quarks ———> Quark stars

M_{max}: implications for quark matter

PSR J1614-2230 M=1.97 \pm 0.04 M_{\odot}

Quark stars are characterized by **soft equations of state**

Quarks in SQM are treated as **relativistic** and **weak-interacing** particles

What is the state of SQM at realistic density of pulsars?

(P. Demorest, et al, 2010)

Quark-clustering in cold quark matter

interior of quark stars

A polytropic model of quark stars

• Polytropic model is widely used in *main-sequent stars* and *hadronic phase of neutron stars*

 $P = K \rho_g{}^{\Gamma},$

$$\rho = \rho_g c^2 + nP, \quad \Gamma = 1 + 1/n$$

• If quark stars are composed of quark clusters, their equation of state could be also the polytropic form

➤ a general framework

• Equation of state

$$P = K\rho_g^{1+\frac{1}{n}} - \Lambda,$$

$$\rho = \rho_g c^2 + n K \rho_g^{1+\frac{1}{n}} + \Lambda.$$
QCD vacuum
energy density
Quark star
$$\Lambda \neq 0$$

$$\Lambda \neq 0$$

What's *new* in our polytropes:

- 1. Non-zero surface density
- 2. Different vacuum energy density inside and outside of a quark star

(X. Y. Lai & R. X. Xu, 2009a)

Lennard-Jones quark matter

• *Quantum* kinetic energy of quark-clusters

$$E_k \sim 1 \text{ MeV}(\frac{\rho}{\rho_0})^{\frac{2}{3}} (\frac{N_q}{18})^{-\frac{5}{3}}$$

- If the inter-cluster potential well is deep enough (>>1 MeV), quark-clusters could crystallize
- Apply L-J model to describe inter-cluster potential:

$$u = 4U_0[(\frac{r_0}{r})^{12} - (\frac{r_0}{r})^6]$$

(similar to inert gas)

(F. Wilczek, 2007)

(N. Ishii et. al, 2007)

$2M_{\odot}$ pulsar: constraint on N_q

(X. Y. Lai & R. X. Xu, 2011)

Conclusions

- Quark stars with quark-clusters
 stiff EoS → M_{max} > 2 M_☉
- M_{max} could have implications on state of SQM

• Number of quarks of each cluster: $Nq \le 10^3$

Properties of low energy QCD (energy scale ~ 0.4-0.8 GeV)

Thank you !