Polarization Observations of 20 millisecond pulsars

Wenming Yan (闫文明)

Xinjiang Astronomical Observatory 10 May 2011

- Background
- Observations
- Data analysis
- Results
- Summary

- Pulsars are highly polarized radio sources.
- Polarization measurements can give us a lot of information.
- MSPs have very different properties to those of 'normal' pulsars.
- The polarization characteristics of MSPs are remarkably similar to those of normal pus-lars.
- The PA variations in MSPs are often complex and do not fit the RVM well.

Observations(1/3)

- The observations were made using the centre beam of the Parkes 20cm Multibeam receiver with PDFB2 between 2007 June and 2009 November.
- The total bandwidth was 256 MHz centred at 1369 MHz with 1024 channels across the band for most of the 20 pulsars.
- 17 pulsars were observed for 64 minutes each time, and 32 minutes for the other 3 pulsars (PSRs J1857+0943, J1939+2134, J2124-3358).

Observation(2/3)

- All data were recorded using the PSRFITS data format with 1-minute sub-integrations.
- A 2-minute calibration observation was made before each pulsar observation.
- Flux density scales were established using observations of Hydra A.
- Cross coupling between the two signal feed probes of the MB receiver was measured.

Observations(3/3)

Table 1. Observational parameters for the 20 PPTA MSPs

PSR	P (ms)	$\begin{array}{c} {\rm DM} \\ {\rm (cm^{-3}\ pc)} \end{array}$	Nr of Channels	Nr of Bins	DM Smear (bins)	Nr of Obs.	Integ. Time (h)
J0437-4715	5.757	2.64	1024	1024	0.4	92	96.3
J0613 - 0200	3.062	38.78	1024	512	5.2	41	43.3
J0711 - 6830	5.491	18.41	1024	512	1.4	28	29.1
J1022+1001	16.453	10.25	1024	2048	1.0	34	34.3
J1024 - 0719	5.162	6.49	1024	1024	1.0	29	30.0
J1045 - 4509	7.474	58.17	2048	512	1.6	33	34.1
J1600 - 3053	3.598	52.33	1024	512	6.0	28	29.7
J1603 - 7202	14.842	38.05	1024	1024	2.1	23	23.7
J1643 - 1224	4.622	62.41	1024	512	2.8	34	36.1
J1713 + 0747	4.570	15.99	1024	1024	2.9	40	40.7
J1730 - 2304	8.123	9.62	1024	1024	1.0	23	23.7
J1732 - 5049	5.313	56.82	2048	512	2.2	24	24.7
J1744 - 1134	4.075	3.14	512	1024	1.3	33	34.4
J1824 - 2452	3.054	120.50	2048	256	4.1	27	28.0
J1857 + 0943	5.362	13.30	1024	1024	2.1	26	13.4
J1909 - 3744	2.947	10.39	1024	512	1.5	67	69.6
J1939+2134	1.558	71.04	1024	256	9.4	26	13.8
J2124 - 3358	4.931	4.60	1024	1024	0.8	25	13.1
J2129 - 5721	3.726	31.85	1024	512	3.5	25	25.5
J2145 - 0750	16.052	9.00	1024	2048	0.9	29	29.6

Yan et al. (2011)

Data analysis

- All data were processed using the PSRCHIVE software package.
- We take the weighted average of RMs for each observation as the value of RM for a given pulsar.
- The ionosphere RM contribution was estimated using FARROT (at DRAO, Canada) and removed from the total RM.
- In order to accurately align the profiles, TEMPO2 was used to fit the TOAs for all observations for a given pulsar to give a timing model.

Polarization profiles(1/3)

PSR J1045-4509

Polarization profiles(2/3)

Polarization profiles(3/3)

Overall pulse width

- Seven pulsars have emission spanning less than half of the period
- Five have emission over more than three quarters of the period

Yan et al. (2011)

Rotation Measure

PSR	Gal. l (deg)	Gal. b (deg)	Dist. (kpc)	$\begin{array}{c} {\rm RM} \ ({\rm This} \ {\rm work}) \\ ({\rm rad} \ {\rm m}^{-2}) \end{array}$	RM (Prev. Publ.) (rad m ⁻²)	$\langle B_{ } angle \ (\mu { m G})$
J0437-4715	253.39	-41.96	0.16	0.0 ± 0.4	$1.5 \pm 5^{\mathrm{a}}$	-0.0 ± 0.19
J0613-0200	210.41	-9.30	1.25	9.7 ± 1.1	$19 \pm 14^{\mathrm{b}}$	0.31 ± 0.03
J0711 - 6830	279.53	-23.28	0.86	21.6 ± 3.1	$67 \pm 23^{\mathrm{b}}$	1.45 ± 0.21
J1022 + 1001	231.79	+51.10	0.56	-0.6 ± 0.5		-0.07 ± 0.06
J1024 - 0719	251.70	+40.52	0.53	-8.2 ± 0.8		-1.56 ± 0.15
J1045 - 4509	280.85	+12.25	0.30	92.0 ± 1.0	82 ± 18^{b}	1.95 ± 0.02
J1600 - 3053	344.09	+16.45	5.00	-15.5 ± 1.0		-0.36 ± 0.02
J1603 - 7202	316.63	-14.50	1.17	27.7 ± 0.8	20.1 ± 5^{b}	0.90 ± 0.03
J1643 - 1224	5.67	+21.22	0.45	-308.1 ± 1.0	-263 ± 15^{b}	-6.08 ± 0.02
J1713 + 0747	28.75	+25.22	1.05	8.4 ± 0.6		0.65 ± 0.05
J1730 - 2304	3.14	+6.02	0.53	-7.2 ± 2.2		-0.92 ± 0.28
J1732 - 5049	340.03	-9.45	1.41	-8.5 ± 6.7		-0.18 ± 0.15
J1744 - 1134	14.79	+9.18	0.42	-1.6 ± 0.7		-0.63 ± 0.27
J1824 - 2452	7.80	-5.58	4.90	77.8 ± 0.6	1 ± 12^{c}	0.80 ± 0.01
J1857 + 0943	42.29	+3.06	0.91	16.4 ± 3.5	53 ± 9^{d}	1.52 ± 0.32
J1909 - 3744	359.73	-19.60	1.27	-6.6 ± 0.8		-0.78 ± 0.09
J1939 + 2134	57.51	-0.29	8.33	6.7 ± 0.6	-10 ± 9^{c}	0.12 ± 0.01
J2124 - 3358	10.93	-45.44	0.32	-5.0 ± 0.9	$1.2 \pm 1^{\rm b}$	-1.34 ± 0.24
J2129 - 5721	338.01	-43.57	0.53	23.5 ± 0.8	37.3 ± 2^{b}	0.91 ± 0.03
J2145 - 0750	47.78	-42.08	0.62	-1.3 ± 0.7	12 ± 8^{b}	-0.18 ± 0.1

References: (a) Navarro et al. (1997); (b) Manchester & Han (2004); (c) Rand & Lyne (1994); (d) Han et al. (2006).

Yan et al. (2011)

Summary

- Our polarization profiles generally have very high S/N ratios compared to earlier results.
- We have not only defined the polarization properties more accurately, but also revealed previously unknown profile features in many of the pulsars.
- We derive RMs for all 20 pulsars, eight of which have no previously published RMs.

THANKS!

